MIT
[youtube]http://youtu.be/miw2CiKp1r0[/youtube] Lecture 19: More Optimization and Clustering This lecture continues to discuss optimization in the context of the knapsack problem, and talks about the difference between greedy approaches and optimal approaches. It then moves on to discuss supervised and unsupervised machine learning optimization problems. Most of the time is spent on clustering.
[youtube]http://youtu.be/BRjwkgQct28[/youtube] Lecture 18: Optimization Problems and Algorithms
[youtube]http://youtu.be/TIQTYgmavC4[/youtube] Lecture 17: Curve Fitting
Lecture 16: Using Randomness to Solve Non-random Problems [youtube]http://youtu.be/Q148jV9ljPM[/youtube]
[youtube]http://youtu.be/VqZBqoZgL7k[/youtube] Lecture 15: Statistical Thinking
Recent Comments