MIT

6: Bisection Methods, Newton/Raphson, Introduction to Lists def squareRootBi(x, epsilon):    “””Assumes x >= 0 and epsilon > 0    Return y s.t. y * y is within epsilon of x”””    assert x >= 0, ‘x must be non-negative, not’ + str(x)    assert epsilon > 0, ‘epsilon must be positive, not’ + str(epsilon)  […]

Continue reading about Lec 6 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

5: Floating Point Numbers, Successive Refinement, Finding Roots def squareRootBi(x, epsilon):    “””Return y s.t. y*y is within epsilon of x”””    assert epsilon > 0, ‘epsilon must be positive, no ‘ + str(epsilon)    low = 0    high = max(x, 1)    guess = (low + high) / 2.0    ctr = 1  […]

Continue reading about Lec 5 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

Continue reading about Lec 4 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

Continue reading about Lec 3 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008

Continue reading about Lec 2 | MIT 6.00 Introduction to Computer Science and Programming, Fall 2008